Robust quantum state transfer via topologically protected edge channels in dipolar arrays

We show how to realise quantum state transfer between distant qubits using the chiral edge states of a two-dimensional topological spin system. Our implementation based on Rydberg atoms allows to realise the quantum state transfer protocol in state-of-the-art experimental setups. In particular, we show how to adapt the standard state transfer protocol to make it robust against dispersive and disorder effects. …

Read More...

Comments Off on Robust quantum state transfer via topologically protected edge channels in dipolar arrays

A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions

Adiabatic quantum computing is an analogue quantum computing scheme with various applications in solving optimisation problems. In the parity picture of quantum optimization, the problem is encoded in local fields that act on qubits that are connected via local four-body terms We present an implementation of a parity annealer with Transmon qubits with a specifically tailored Ising interaction from Josephson ring modulators. …

Read More...

Comments Off on A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions

An efficient magic state approach to small angle rotations

Standard error-correction techniques only provide a quantum memory and need extra gadgets to perform computation. Central to quantum algorithms are small angle rotations, which can be fault-tolerantly implemented given a supply of an unconventional species of magic state. We present a low-cost distillation routine for preparing these small angle magic states. Our protocol builds on the work of Duclos-Cianci and Poulin (2015 Phys. Rev. A 91 [http://10.1103/PhysRevA.91.042315] 042315 ) by compressing their circuit. Additionally, we present a method of diluting magic states that reduces costs associated with very small angle rotations. We quantify performance by the expected number of noisy magic states consumed per rotation, and compare with other protocols. For modest-sized angles, our protocols offer a factor 24 improvement over the best-known gate synthesis protocols and a factor 2 over the Duclos-Cianci and Poulin protocol. For very small angle rotati… …

Read More...

Comments Off on An efficient magic state approach to small angle rotations

Multi-user quantum key distribution with entangled photons from an AlGaAs chip

In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achiev… …

Read More...

Comments Off on Multi-user quantum key distribution with entangled photons from an AlGaAs chip

Simple method of generating and distributing frequency-entangled qudits

High-dimensional, frequency-entangled photonic quantum bits (qudits for d -dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with ##IMG## [http://ej.iop.org/images/2058-9565/1/1/015004/qstaa4944ieqn1.gif] {$d\gt 10$} without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable … …

Read More...

Comments Off on Simple method of generating and distributing frequency-entangled qudits

Enhanced security for multi-detector quantum random number generators

Quantum random number generators (QRNG) represent an advanced solution for randomness generation, which is essential in every cryptographic application. In this context, integrated arrays of single-photon detectors have promising applications as QRNGs based on the spatial detection of photons. For the employment of QRNGs in cryptography, it is necessary to have efficient methods to evaluate the so-called quantum min-entropy that corresponds to the amount of the true extractable quantum randomness from the QRNG. Here, we present an efficient method that allows the estimation of the quantum min-entropy for a multi-detector QRNG. In particular, we consider a scenario in which an attacker can control the efficiency of the detectors and knows the emitted number of photons. Eventually, we apply the method to a QRNG with 10 3 detectors. …

Read More...

Comments Off on Enhanced security for multi-detector quantum random number generators