Neuroscience

The ancients believed that the ‘I’ in the mind is a reflection of the body. Just as athletes and sports people develop muscle memory, the bodymind retains the imprints of experiences that shape your memories, emotions and desires, which in turn form the basis of your conscious and sub-conscious choices and actions. Who you are is a reality of your own making.

Aside from drugs, sleep deprivation, extreme physical experiences or direct physical interference, nothing or no one can reach into your head and make you do or believe something against your will – all your beliefs and actions are a result of choices you make, knowingly or unknowingly, based on long held beliefs or reasoned, considered thought. The world is not simply and only something ‘out there’, you construct a view of and feelings about something ‘out there’ and make sure it suits the feeling you want or allow yourself to have about it at that moment and in that situation.

Neuroscience is a fast developing field that explores this aspect of who we are.

A very good guide is  Neuroscience of Self and Self-Regulation by Todd F. Heatherton

As a social species, humans have a fundamental need to belong that encourages behaviors consistent with being a good group member. Being a good group member requires the capacity for self-regulation, which allows people to alter or inhibit behaviors that would place them at risk for group exclusion. Self-regulation requires four psychological components. First, people need to be aware of their behavior so as to gauge it against societal norms. Second, people need to understand how others are reacting to their behavior so as to predict how others will respond to them. This necessitates a third mechanism, which detects threat, especially in complex social situations. Finally, there needs to be a mechanism for resolving discrepancies between self-knowledge and social expectations or norms, thereby motivating behavior to resolve any conflict that exists. This article reviews recent social neuroscience research on the psychological components that support the human capacity for self-regulation.

 

  • James DiCarlo named director of the MIT Quest for Intelligence
    James DiCarlo, the Peter de Florez Professor of Neuroscience, has been named director of the MIT Quest for Intelligence. He will step down from his current role as head of the Department of Brain and Cognitive Sciences.
  • Scientists seek insight into Parkinson’s, addiction by tracking gene expression in the brain
    Myriam Heiman (left) and Alan Jasanoff have received grants to screen for genes that could help brain cells withstand Parkinson’s disease and to map how gene expression changes in the brain in response to drugs of abuse.
  • Brain waves guide us in spotlighting surprises
    Our ability to highlight surprises stems from a specific interplay of brain waves that suppress processing of predicted stimuli, such as the things we always see around the office, to pave the way for heightened processing of what’s new, like a gift left on the desk one morning.
  • Neuroscientists identify brain circuit that encodes timing of events
    MIT neuroscientists have found that pyramidal cells (green) in the CA2 region of the hippocampus are responsible for storing critical timing information.
  • Cortex over reflex: Study traces circuits where executive control overcomes instinct
    Sometimes when we steer it’s to follow a cue about our route, and sometimes its a reflex based on avoiding a collision. A recent study shows how the brain is wired for both kinds of sensorimotor behavior.
  • Controlling drug activity with light
    A multifunctional fiber-inspired neural implant was implanted into a phantom brain (left), and successfully delivered light and a blue dye (right).
  • To the brain, reading computer code is not the same as reading language
    New research suggests that reading computer code does not rely on the regions of the brain that are involved in language processing.
  • “SCOUT” helps researchers find, quantify significant differences among organoids
    This cross-section of an organoid processed with SCOUT shows cells labeled with various antibodies to highlight different cell types: Cell nuclei are in blue (DAPI dye), glia/neural progenitor nuclei are in red (anti-SOX2), glia/neural progenitor projections are in green (anti-vimentin), neuronal projections are in white (anti-B3-tubulin).
  • A hunger for social contact
    MIT neuroscientists have found that the longings for social interaction felt during isolation are neurologically similar to the food cravings people experience when hungry.
  • Imaging method reveals a “symphony of cellular activities”
    MIT researchers have developed a way to simultaneously image up to five different molecules within a cell, by targeting glowing reporters to distinct locations inside the cell. This approach could allow scientists to learn much more about the complex signaling networks that control most cell functions.
  • Identifying the structure and function of a brain hub
    Postdoc Arghya Mukherjee studies the brain circuits involved in decision-making, and how these circuits go awry in people with psychiatric disorders.
  • Scientists identify specific brain region and circuits controlling attention
    Neurons of the locus coeruleus, shown here expressing the green-hued fluorescent calcium indicator GCaMP6F, are causally responsible for attentional control: the abilities to focus attention and to curb impulses in pursuit of a goal.
  • Media Multitasking Is Ruining Our Memory. Can We Fix It?
    Media Multitasking Is Ruining Our Memory. Can We Fix It? I picked up a bad habit during lockdown: binge Netflix at double speed, while scrolling through the Twitter cesspool on my phone. I think I feel mentally stimulated, and trick myself into believing that I’m learning more in less time. Yeah, no. A new study,…
  • How a worm may yield insights into the gut-brain relationship
    Brain and cognitive sciences PhD student Gurrein Madan was awarded a MathWorks Fellowship for using MATLAB to investigate the gut-brain connection.
  • Study helps explain why motivation to learn declines with age
    “As we age, it’s harder to have a get-up-and-go attitude toward things,” says study author Ann Graybiel.
  • Emery Brown wins Swartz Prize for Theoretical and Computational Neuroscience
    A neuroscientist, statistician, and anesthesiologist, Emery Brown was recognized for his many contributions to understanding brain activity and the neuroscience of anesthesia.
  • Neural pathway crucial to successful rapid object recognition in primates
    MIT researchers used an object recognition task (e.g., recognizing that there is a “bird” and not an “elephant” in the shown image) in studying the role of feedback from the primate ventrolateral prefrontal cortex (vlPFC) to the inferior temporal (IT) cortex via a network of neurons. In primate brains, temporally blocking the vlPFC (green shaded area) disrupts the recurrent neural network comprising vlPFC and IT, inducing specific deficits and implicating its role in rapid object identification.
  • Statistical model improves analysis of skin conductance
    With electrodes strapped to two fingers, researchers can read out changes in skin conductance produced by sweat. These fluctuations reflect subconscious changes in physical or emotional state. A new statistical method of analyzing the resulting signal is faster and more accurate than previous methods because it is based on the physiology of sweat.
  • Scientists uncover new clues about Parkinson’s disease
    Helen Schwerdt, a postdoc in Ann Graybiel’s lab, builds ultrathin probes that target brain microstructures with pinpoint accuracy.
  • Scientists Found a New Way to Control the Brain With Light—No Surgery Required
    Scientists Found a New Way to Control the Brain With Light—No Surgery Required If I had to place money on a neurotech that will win the Nobel Prize, it’s optogenetics. The technology uses light of different frequencies to control the brain. It’s a brilliant mind-meld of basic neurobiology and engineering that hijacks the mechanism behind…
  • Neuroscientists discover a molecular mechanism that allows memories to form
    A new MIT study reveals that encoding memories in engram cells is controlled by large-scale remodeling of the proteins and DNA that make up cells’ chromatin. In this image of the brain, the hippocampus is the large yellow structure near the top. Green indicates neurons that were activated in memory formation; red shows the neurons that were activated in memory recall; blue shows the DNA of the cells; and yellow shows neurons that were activated in both memory formation and recall, and are thus considered to be the engram neurons.
  • How a Memory Quirk of the Human Brain Can Galvanize AI
    How a Memory Quirk of the Human Brain Can Galvanize AI Even as toddlers we’re good at inferences. Take a two-year-old that first learns to recognize a dog and a cat at home, then a horse and a sheep in a petting zoo. The kid will then also be able to tell apart a dog…
  • Live imaging method brings structure to mapping brain function
    A distinct thicket of vessels and myelin fibers (which wrap around the long extensions of many neurons) are evident in each color-coded visual processing region in the cortex of a mouse. The columns are formed by stacking images taken at 5-micron increments through a millimeter of depth in each of the regions.
  • Want to Decode the Human Brain? There’s a New System for That, and It’s Pretty Wild
    Want to Decode the Human Brain? There’s a New System for That, and It’s Pretty Wild Even for high-tech California, the man strolling around UCLA was a curious sight. His motion capture suit, sensor-embedded gloves, and virtual reality eyewear were already enough to turn heads. But what stopped people in their tracks and made them…
  • New molecular therapeutics center established at MIT's McGovern Institute
    Lisa Yang (center) and Hock Tan ’75 (right) are pictured with their daughter Eva at the opening of the Hock E. Tan and K. Lisa Yang Center for Autism Research in 2017.